
 
 

 

  

Abstract—Numerous applications require a self-contained 
personal navigation system that works in indoor and outdoor 
environments, does not require any infrastructure support, and 
is not susceptible to jamming.  Posture tracking with an array of 
inertial/magnetic sensors attached to individual human limb 
segments has been successfully demonstrated. The "sourceless" 
nature of this technique makes possible full body posture 
tracking in an area of unlimited size with no supporting 
infrastructure. Such sensor modules contain three orthogonally 
mounted angular rate sensors, three orthogonal linear 
accelerometers and three orthogonal magnetometers. This 
paper describes a method for using accelerometer data 
combined with orientation estimates from the same modules to 
calculate position during walking and running. The periodic 
nature of these motions includes short periods of zero foot 
velocity when the foot is in contact with the ground. This pattern 
allows for precise drift error correction. Relative position is 
calculated through double integration of drift corrected 
accelerometer data. Preliminary experimental results for 
various types of motion including walking, side stepping, and 
running. 

I. INTRODUCTION 
OSITION tracking of human movement commonly 
requires an unrestricted line of sight between one or more 

receivers and one or more transmitters. In inside-out systems 
a sensor attached to a person to be tracked, passively or 
actively receives information from multiple “sources” 
positioned around a tracking volume. In outside-in tracking 
systems, multiple sensors positioned around a tracking 
volume sense active or passive sources attached to the object 
to be tracked. The global positioning system (GPS) is a 
familiar example of a sourced inside-out tracking system. 
Optical tracking systems that use multiple cameras to view 
active or passive markers and calculate position through 
triangulation are an example of a sourced outside-in tracking 
system. 
 Inside-out or outside-in tracking systems require extensive 
set-up and calibration of the tracking volume. Line of site and 
noise restrictions limit range as well as where these systems 
can be used. In some cases jamming or intentional 
interference makes their use impractical. “Sourceless” 
systems are self-contained. Data that are produced by sensors 
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attached to a person can be used to calculate position without 
reference to other devices or transmitters. In theory, a 
sourceless system with accuracy comparable to a sourced 
system is superior since it does not require extensive 
infrastructure positioned around or above a tracking 
environment of limited size, and is not susceptible to line of 
sight restrictions between a transmitter and source.  
 Sourceless orientation tracking using small 
inertial/magnetic sensor modules containing triads of 
orthogonally mounted accelerometers, angular rate sensors, 
and magnetometers has been successfully demonstrated. 
Several commercial posture tracking systems based on 
orientation tracking have resulted.  The individual sensors 
used in inertial/magnetic sensor modules are low-cost 
Micro-Electro-Mechanical Systems (MEMS) sensors.  Low 
cost MEMS accelerometers are susceptible to drift errors. 
Until recently, it was widely thought that position tracking 
using data from such accelerometers was not possible due to 
the quadratic growth of errors caused by sensor drift during 
double integration.  
 Most types of human movement including walking, side 
stepping, and running include repeated recognizable periods 
during which the velocity and acceleration of the foot are 
zero. These brief periods occur before entering the swing 
phase of the gait cycle each time the foot contacts the ground 
during the stance phase. Recognition of these periods allows 
determination of the drift error that occurred in between them. 
This allows precise corrections to be made to accelerometer 
data in either a forward or backward manner. The corrected 
accelerometer data combined with magnetic and angular rate 
data can then be used to calculate the direction and magnitude 
of displacement that occurs during each step. This allows 
accurate measurement of position relative to an initial starting 
point. 
 This paper describes a self-contained method for relative 
position tracking of a human engaged in various types of 
motion involving discrete steps. This method is based on the 
use of a single inertial/magnetic sensor module attached to the 
foot. The primary contributions of this work are: 
• A method for tracking 2-D and 3-D position of human 

movement using a self-contained inertial/magnetic 
sensor module. 

• Preliminary experimental results for various human 
motion including straight line walking, circular walking, 
side stepping, backward walking, running, and climbing 
stairs. 

 The remainder of this paper describes in detail how 
accelerometer data in conjunction with orientation estimates 
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produced using data from inertial/magnetic sensor modules 
can be used to track human position in three dimensions 
without any supporting infrastructure. Section II presents 
related work and describes the foundation on which the work 
presented here is built. Section III is a detailed description on 
the sourceless position tracking method. Experimental results 
are presented in Section IV. The final section is a summary 
and conclusions.  

II. BACKGROUND 
Much research has focused on using inertial and in a few 

cases magnetic sensors to measure distance walked and/or 
track position. Many methods have involved attempts to 
count steps and estimate distance based on an approximate 
step length. Other work has double integrated acceleration 
data recorded during the gait swing phase to estimate 
distance. Few have attempted to determine the direction of 
motion. In most cases, distance estimation errors when using 
more complex inertial sensor combinations have been only 
slightly better than those obtained using commercial 
pedometers. 

 Simple pedometers focus on counting steps. Based on 
this step count and an average step length, a pedometer unit 
can estimate distance traveled. In pedometers, step count is 
generally estimated by measuring vertical acceleration using 
a single axis piezo-electric accelerometer or by monitoring a 
spring suspended horizontal lever that moves up and down in 
response to vertical accelerations of the hips. The accuracies 
of pedometer produced step counts vary greatly depending on 
the type of technology used, walking speed, and physical 
aspects of individuals being tracked [1]. Pedometers do not 
have the ability to differentiate between different types of gait 
such as running, shuffling, and side stepping. In [2], Crouter 
et al. tested and compared several electronic pedometers in 
estimating step counts and distance traveled with subjects 
walking on a treadmill. Several models were able to count 
steps to within ±1% of the actual value during normal 
uniform walking. Estimates of distance traveled were less 
accurate with most units estimating mean distance to within 
±10% at a walking speed of 80 meters per minute. Overshoots 
tend to occurs at slower speeds. Undershoots tend to occur at 
higher speeds. In [3], Schneider et al. compared pedometer 
performance when subjects walked over a closed 400 meter 
course. Accuracy of step counts as well as distance estimates 
decreased in this more natural environment. Step count 
accuracy decreased to ± 3%. Since walking speed and stride 
length was no longer artificially controlled using a treadmill, 
the accuracy of distance estimates showed a greater decrease.  

 In [4], Pappas et al. describe a reliable gait phase 
detection system based on a single axis angular rate sensor 
and three force sensitive resistors. In this system, all motion is 
assumed to take place in the sagittal plane. The angular rate 
sensor is mounted to the heel with its sensing axis 
perpendicular to the sagittal plane and is used to measure the 
rotational velocity of the foot. The force sensitive resistors are 

taped to the bottom of the same foot. Using a heuristic based 
algorithm designed to detect four different gait phases 
(stance, heel-off, swing, and heel-strike), the system was able 
to detect the phases with 99% reliability. Unlike simple 
pedometers, the described method worked well to detect gait 
phases during walking over level and unleveled surfaces as 
well as walking up and down stairs. In addition, the system 
demonstrated robustness in ignoring non-gait events such as 
standing up and sitting down, bending, and turning in place. 
The system did not have the ability to estimate distance or 
direction traveled. 

 Zijlstra and Hof use a single triaxial accelerometer, 
measured leg length, and an algorithm based on an inverted 
pendulum model [5] to predict the body center of mass 
trajectory during walking. The method determines foot 
contacts by monitoring for changes in sign of the forward 
acceleration of the lower trunk. Unlike pedometers which use 
a fixed step length, mean step length and walking speed are 
estimated based on up and down movement of the trunk. 
Experimental results in [6] include data from both treadmill 
and level ground walking trails. In most cases, the described 
method identified foot contacts with nearly 100% accuracy. 
In treadmill experiments, maximum observed differences 
between predicted speed and treadmill speed were no greater 
than 16%. In level ground walking experiments with 
presumably less uniform gait, differences between predicted 
mean speed and calculated mean speed did not exceed 20%. 
This method is able to detect gait event with great accuracy. 
However, due to the magnitude of the distance measurement 
errors and the inability to estimate direction of the travel, the 
navigation performance of this method shows little 
improvement over that of a simple pedometer. 

Sagawa et al. [7], Sabatini et al. [8], and Cavallo et al. [9] 
use a combination of accelerometers and rate sensors attached 
to the foot to measure gait parameters and distance traveled. 
The Sagawa approach uses a tri-axial accelerometer and a 
single axis angular rate sensor attached to the toe (an 
atmospheric pressure sensor is used to measure change in 
altitude). The Sabatini and Cavallo approach uses a bi-axial 
accelerometer and a single axis angular rate sensor attached 
to the instep.   

Sagawa et al. assumes that foot roll and yaw are zero 
during normal walking. Sabatini and Cavallo assume all 
motion takes place in a sagittal plane. In both cases, a rate 
sensor is mounted perpendicular to the sagittal plane. Gait 
events such as heel-off, heel-strike, and swing are detected 
using angular rate data. Instead of counting steps, walking 
speed and stride length are estimated by double integrating 
acceleration data during the swing phase. For best 
performance, the tracked subject is required to maintain a 
uniform walking speed and gait. Both research efforts were 
able to detect gait events with high levels of confidence. In 
limited experimental results, Sagawa et al. reports a 
maximum distance estimation error of 5.3% over a 30 meter 
course. Reported experimental results obtained while 
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Figure 1.  Results of a one-meter sliding motion 
experiment with original accelerometer data and 
integrated velocity and position on the left and the 
drift-corrected data and resulting velocity and 
position on the right side. 

walking over a 400 meter closed course in [9] characterize 
errors as being much smaller with an average measured 
distance of 401.2 ±4.61 meters or just over a 1% error. 
Though GPS heading information was used in [9] to 
reconstruct the path of travel, neither of the systems described 
is able to determine the direction of displacement or position. 

A great deal of research has focused on integrating inertial 
dead reckoning systems with positional information provided 
by GPS and DGPS. In [10], Jarawimut et al. implement a 
pedestrian navigation system. During periods of GPS 
availability, compass bias and average step length are 
updated to make dead reckoning results more closely match 
GPS estimates. When GPS information is unavailable, 
distance traveled is calculated by multiplying the number of 
steps times an average step length. A compass is used to 
estimate the direction of travel and the system is able to 
provide an estimate of position as long as the tracked subject 
is walking in a normal manner. 

 Other attempts to produce a personal navigation based 
on the integration of inertial/magnetic sensors are 
documented in [11] and [12]. In [11] Judd suggests that step 
length can be estimated based on a linear relationship with 
cadence. The described system consists of a GPS receiver, a 
three dimensional compass, and tri-axial accelerometer. The 
accelerometer is used as a tilt sensor to determine the 
horizontal component of the magnetic field and to detect foot 
falls. Average step length is estimated by a Kalman filter 
algorithm. Distance traveled is based on the product of the 
number of steps and the estimated step length. Again this 
approach is limited to level walking in open spaces. The 
personal navigation module described in [12] contains a 
tri-axial magnetometer, a tri-axial accelerometer, a 
barometric pressure sensor, and a GPS receiver. Distance 
traveled is still based on the step length/step count product. It 
is claimed that unlike other similar systems, a pattern 
recognition algorithm is used to identify acceleration 
signatures related to different types of movement such as 
forward and backward walking, lateral walking, and running. 
Performance claims for a commercial version of the system 
give a 2D positional accuracy of better than 5% of distance 
traveled for “forward walking under normal conditions [13].” 
No accuracy figures are given for other types of motion. 
However, in independent use of the product, the Sendero 
Groups reports typical errors on the order of 15% [14].  

III. METHOD FOR TRACKING POSITION 
In theory, the output of an accelerometer can be integrated 

twice to obtain displacement information.  However, 
low-cost accelerometers are susceptible to drift errors.  The 
position estimates based on double integration can diverge in 
a short time period lasting only a few seconds.  Drift 
correction is thus essential for tracking position using 
low-cost accelerometers.  In this section, a drift correction 
method is first described.  An application of this method to 
position tracking of a walking person is then detailed. 

A. Correcting Accelerometer Drift 
The drift correction method is best illustrated with the 

following experiment.  An accelerometer is first placed on 
a level table top, and then is slid along a straight line for a 
distance of one meter. The initial and final velocities are 
zero.  Figure 1 shows the accelerometer measurement data, 
as well as estimated velocity and position for such an 
experiment in which an Analog Devices ADXL210E 
accelerometer was used. The three plots on the left side 
show the results of the original data, and the plots on the 
right side show the results of the corrected data. The 
correction procedure is discussed below.  The velocity is 
obtained by integrating accelerometer measurements once, 
and the position is obtained by integrating the velocity. 
While the sensor actually moved a distance of one meter, 
the estimated distance obtained by double integration is 
0.80m as seen in the lower-left plot.  A close examination 
of the velocity in the middle-left plot indicates that the final 
estimated velocity is -0.23m/s at the end of the motion 
period, although the sensor stopped moving and the actual 
velocity was zero at this point.  The error in the estimated 
velocity is due to drift in accelerometer measurements.  
Because the final velocity is known to be zero in this case, 

a drift correction can be applied to the accelerometer 
measurements so that the final estimated velocity is zero.  
The three plots on the right side of Figure 1 are the 
corrected acceleration, velocity, and distance.  It is seen 
that the final velocity is now zero.  As a result of this drift 
correction, the estimated distance moved is 1.01m.  
Clearly, this drift correction method makes it possible to 
obtain accurate position information through double 
integration.  Many more experiments were conducted, and 
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Figure 3.  Three components of the velocity obtained by 
integrating the original acceleration measurement. 

Figure 2.  Original and drift-corrected data for a 
three-meter sliding motion experiment. 

similar results were obtained.   Figure 2 shows the results 
of an experiment where the sensor was moved a distance of 
three meters.  With the uncorrected data, the final estimated 
distance is 2.01m, yielding an estimation error of 33%.  
After applying the drift correction, the final estimated 
distance is 2.99 m with an estimation error of only 0.3%.  

B. Position Tracking of a Person 
 Human gait motion is cyclic in nature.  During walking, 
each gait cycle consists of two phases: a stance phase and a 
swing phase. The stance phase is the portion of the cycle 
during which a foot is in contact with the ground. The swing 
phase is the portion of the cycle during which the same foot 
is not in contact with the ground. The stance phase takes 
approximately 60% of the gait cycle, and the swing phase 
takes the remaining 40%. During walking (rather than 
running or jumping), there are two periods of time in a 
single gait cycle when both feet are in contact with the 
ground. This period of double support occupies about 20% 
of the gait cycle [15].  Based on the results of experiments 
presented in the previous subsection, it is possible to obtain 
accurate position information by double integrating 
accelerometer measurements as long as drift in 
accelerometer measurements can be corrected.  During the 
stance phase, the foot is in contact with the ground, and foot 
velocity is zero. If an inertial/magnetic sensor module is 
attached to a foot, drift in accelerometer measurements can 
be corrected each time the foot is in the stance phase of the 
gait cycle [7].  If the estimated foot velocity is not zero, a 
drift correction can be applied to the accelerometer 
measurements as discussed in the previous subsection. 
Using this approach, Sagawa, etc. [7] and Gavallo, etc. [9] 
reported early efforts on estimating walking distance. 
 In this work, an inertial/magnetic sensor module is 
attached to the foot, and the 3-dimensional position (not just 
walking distance) of a person is estimated and tracked.  The 
inertial/magnetic sensor modules considered for this study 
contains triads of orthogonally mounted accelerometers, 

angular rate sensors, and magnetometers.  Examples of such 
inertial/magnetic sensor modules include the MARG sensor 
[16], the 3DM-GX1 orientation sensor from MicroStrain 
[17], the nIMU from MEMSense [18], the MTx orientation 
tracker from Xsens [19], and the InertiaCube3 from 
InterSense [20].   These inertial/magnetic sensor modules 
are primarily designed for tracking 3-dimensional 
orientation.  Algorithms used by these sensor modules for 
processing accelerometer, angular rate, and magnetometer 
measurements to produce orientation output typically use a 
Kalman filter [21].  In addition to providing orientation 
output in Euler angles and/or quaternions, some sensor 
modules including the MARG, 3DM-GX1 and nIMU also 
optionally provide scaled measurements of acceleration, 
angular rate, and magnetic field.  3DM-GX1 and nIMU are 
used in this study. 
 Acceleration measurements provided by the 
inertial/magnetic sensor module are in sensor or body 
coordinates.  These measurements are first transformed into 
the earth coordinates.  The transformation is accomplished 
by using the quaternion output of the sensor module.  The 
three components of the acceleration measurements in the 

earth coordinates are then integrated to obtain velocity 
estimates. Figure 3 depicts the three components of the 
integrated velocity for an eight-meter walk.  During the 
stance phase, each of the velocity components should be 
zero.  However, it is seen that the estimated velocity tends to 
drift over the time.  Applying the drift correction method 
discussed earlier, the corrected velocity profile is shown in 
Figure 4. The corrected velocity is integrated once more to 
obtain 3-dimensional position information.  The accuracy 
of the position information will be discussed in the next 
section which examines detection of gait events during 
various mobility modes including straight line walking, 
circular walking, running, side stepping, backward 
walking, and climbing stairs. 
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Figure 4.  Velocity profile obtained from drift-corrected 
acceleration. 

Figure 5.  Three components of the foot acceleration in 
the earth coordinate system. 
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Figure 6.  Foot angular rate in the ankle axis. 

 

C. Detecting Gait Events 
 In order to apply the drift correction method for 
walking as discussed above, it is necessary to reliably 
detect gait events, particularly the stance phase, using  
measurement data. Both accelerometer and angular rate 
data can be used for this purpose. 
  Figure 5 shows the three components of linear 
acceleration in the earth coordinates during walking.  
While all three acceleration components exhibit a cyclical 
pattern, it can be observed that z-axis acceleration data 
provide the strongest indication of gait events.  During the 
stance phase, acceleration is near zero. Since there are a 
number of zero-crossings during the swing phase, a zero 
threshold and a time heuristic must be applied to the 
acceleration data to detect stance phases. The time heuristic 
is required to avoid classifying any zero crossing in the 
swing phase as a stance phase.  If the acceleration is within 
the threshold for a specified period of time, the foot is 
determined to be in the stance phase.     

 Angular rate measurements also provide an indication 
of gait events.   The angular rate in the sensor coordinates 
measuring ankle axis rotation is more prominent in 
differentiating the stance phase from the swing phase.  
Figure 6 shows the x-axis (or ankle axis) angular rate for a 
typical walk.  The angular rate is near zero during the 
stance phase. A heuristic similar to the method discussed 
above can be applied to the angular rate data to detect the 

stance phase.  In empirical studies involving several 
different people, the use of angular rate data was found to 
be more reliable than acceleration data.   

IV. EXPERIMENTAL RESULTS 
The following sub-sections describe preliminary 

experimental results demonstrating the accuracy of position 
estimation using inertial/magnetic sensor modules. These 
experiments include trials in which the tracked subject 
walked a specified distance in a straight line, walked around a 
closed circuit that was roughly circular in shape, ran a 
specified distance in a straight line, and finally followed a 
square pattern using three different types of motion. 
Preliminary results are also shown for walking up stairs. Data 
for each type of experiment was collected using several 

Figure 7.  MemSense nImu mounted on foot for 
position tracking during walking, side stepping, 
and running.
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different individuals. These brief results are designed to 
demonstrate the robustness of position tracking using 
inertial/magnetic sensor modules and make apparent the wide 
applicability of this method to numerous applications. At the 
time of this writing, further experiments are under way as the 
position tracking method is refined. 

All experiments were conducted using a single sensor 
module attached to the foot as depicted in Figure 7. Distances 
walked were measured using a standard measuring tape. Data 
was collected in real-time and post-processed using a 
program written in Matlab. Sampling rate was approximately 
70 Hz. 

A. Straight Line Walking 
 Straight line walking experiments were conducted to 

validate the feasibility of estimating walking distance on a 
level surface. These experiments measure only displacement 
along a straight line. No attempt was made to estimate 
position. Table 1 shows experimental results for 24-meter 
straight line walk conducted in an indoor laboratory 
environment. Three different experimental subjects with 
varying stride lengths were used. The average distance 
estimation error for the indoor walking experiments is 5.5% 
with a standard deviation of 2.4%. Table 2 shows results for 
longer 120-meter straight line walks conducted in an outdoor 
environment.  Two different subjects were used in these 
experiments. The distance estimation error for this small 
number of experiments was less than that observed during the 
indoor experiments with an average error of 1.3% and a 
standard deviation of 1.3%. Maximum error for the 
120-meter walking experiments was 3.3%.  

 
Table 1.  Experimental results of 24-meter straight line walk. 

Experiment 
# Step Count 

Estimated 
Distance 

(m) 
Error 

1 16 23.59 1.7% 

2 16 21.95 8.5% 

3 17 22.70 5.4% 

4 17 25.61 6.7% 
5 17 25.67 7.0% 
6 17 23.07 3.9% 

 
The marked difference in estimation accuracy between 

indoor and outdoor environments is attributed to errors in 
transforming measurement data from senor coordinates to an 
Earth fixed coordinate system. Magnetometer measurements 
along with accelerometer and angular rate measurements are 
used to compute an orientation quaternion, which is in turn 
used to transform data. In the presence of magnetic 
interference, orientation estimation algorithms designed for 
inertial/magnetic sensor modules exhibit errors in azimuth 

angle estimates [22]. In an indoor environment there is 
considerably more magnetic interference due to the presence 
of file cabinets, computers, monitors, and other laboratory 
equipment. This interference can cause estimated path of 
travel to appear to curve or wobble to the right and left when 
the true path of travel is a straight line. A correction method 
for these errors is currently under investigation. 
 
Table 2.  Experimental results of 120-meter straight line walk 
in an outdoor environment. 

Walker Experiment # Step 
Count 

Distance (m) % Error

A 1 83 116.03 3.3% 

A 2 82 119.42 0.5% 

B 1 80 119.12 0.7% 

B 2 79 119.05 0.8% 

 

B. Straight Line Running 
The described position estimation method is applicable to 

any context involving repeated short periods during which 
angular rate and velocity are zero. During running, as with 
walking, there are brief periods of time in the gait cycle 
during which the foot is in contact with the ground.  Although 
these zero velocity periods are relatively short, the same 
method can be used to correct drift in accelerometer 
measurements.  Relative to walking, it is more difficult to 
detect the stance phase from running data due to the short 
duration of these periods.  

Straight line running experiments were conducted over the 
same 120-meter course used in the outdoor walking 
experiments. Again these experiments tested only the ability 
to measure displacement along a straight line.  Table 3 shows 
the results of two running experiments over a 120-meter long 
course. The maximum error for these experiments was within 
4.75% of the actual distance covered. 

 
Table 3.  Experimental results of 120-meter straight line 
running  

Test 
# 

Step 
Count

Actual 
Distance (m)

Estimated 
Distance (m) 

Error 

1 57 1 20.0 115.4 3.80% 
2 54 120.0 114.3 4.75% 

 

C. Circular Walking 
Circular or curved walking experiments were the first to be 

conducted in order to validate the feasibility of tracking 2-D 
position. During these experiments the position of the foot 
was simultaneously monitored by an optical tracking system.  
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Figure 8.  Position tracking of circular walking 
trajectory. 

Figure 10.  Estimated 3-D position of a person 
climbing stairs shown in the next figure. 

Figure 9.  Position tracking results of combined 
forward walking, side stepping, and backward 
walking.

Figure 8 shows the position as estimated using 
inertial/magnetic sensor module data. Both axes are plotted in 
meters. The starting and ending point for the foot was the 
same point. This point is (0, 0) in the plot.   Although truth 
reference data is not available as of the time of this writing, 
the accuracy of 2-D position tracking can be seen by 
observing that the estimated trajectory returns to the starting 
point following the period during which the walk occurred 
with high accuracy. 
 

D. Combined Forward Walking, Side Stepping, and 
Backward Walking 
To demonstrate that the position tracking method can be 

applied to mixed types of human movement, a 5.5 meter 

square pattern was measured and marked in an outdoor 
environment.  The test subject followed this marked course 
by walking forward on the first leg of the square from (0,0) 
position to about (-4,3) position, side stepping to the right on 
the second leg of the square, walking backward on the third 
leg of the square, and side stepping to the left on the last leg of 
the square before the foot was returned to the starting point. 
Figure 9 shows the position tracking results for this mixed 
motion experiment.  The x-axis is the north direction, and the 
y-axis is in the east direction.  The starting and ending point is 
again (0, 0).  It can be observed that the end point and starting 
point almost coincide, with a separating distance of 0.08 
meters.  The estimated total walking distance is 21.6 meters, 
while the actual total distance is 22.0 meters giving a distance 
estimation error of 1.8%.  

E. Climbing Stairs 
The inertial/magnetic sensor module provides 

3-dimensional acceleration measurements in x-, y-, and 
z-axes. Thus, it is possible to track 3-dimensional position. 
The experiments described so far were primarily concerned 
with correcting and integrating x- and y-axis acceleration. 
Vertical axis acceleration can be corrected and integrated in 

the same manner in order to estimate relative height.  Figure 
10 depicts the 3-D estimated trajectory of a person who 
climbed the stairs shown in Figure 11. It can be qualitatively 
observed that the estimated trajectory in Figure 10 closely 
resembles the actual profile of stairs.  

 

V. WORK IN PROGRESS 
At the time of this writing further experiments are being 

conducted to evaluate, improve, and document the accuracy 
of position estimation using inertial/magnetic sensor 
modules. These experiments include mixed motion types and 
additional tracking methods for the purpose of providing 
truth data.  

The experimental results provided in this paper were 
obtained by post-processing the sensor data. Efforts are 
currently underway to implement a real-time system. This 
system will be integrated into an immersive virtual 
simulation.  
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Figure 11.  Photo of the stairs used in the experiment 
for estimating 3-D position. 

As seen in the indoor walking experiments, orientation 
estimation errors caused by a non-uniform magnetic 
environment can cause errors in transforming data from 
sensor coordinates to Earth coordinates. A correction method 
has been devised and is currently being tested. 

Work is also in progress to evaluate the feasibility of the 
method for estimating the position of mobile robots that make 
a stop from time to time to provide instances of “stance 
phase” for correcting drift. 

 

VI. CONCLUSION 
Self-contained position tracking using data from 

inertial/magnetic modules has applicability to a wide number 
of applications. Preliminary experimental results presented in 
this paper document that this technique can be used to track 
three dimensional position during a variety of motion types. 
Estimated errors from these experiments indicate that the 
method is accurate. Work is currently underway to further 
refine the method. 
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